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We consider variational multiscale (VMS) methods with h-adaptive technique for the sta-
tionary incompressible Navier–Stokes equations. The natural combination of VMS with
adaptive strategy retains the best features of both methods and overcomes many of their
deficits. A reliable a posteriori projection error estimator is derived, which can be com-
puted by two local Gauss integrations at the element level. Finally, some numerical tests
are presented to illustrate the method’s efficiency.
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1. Introduction

In the numerical simulation of incompressible flows, there are still many challenges, such as, how to control the accuracy
of a numerical approximation for the solutions, which may be degraded by the local singularities or the singularity in the
computational domain. Since the work by Babuska and Rheinboldt [1,2], adaptive control based on a posteriori error esti-
mates has become very attractive. Many researchers pay their attention on the field of a posteriori error estimators and have
got lots of good results in the last few decades, for example, [3–5] derive the residual-based a posteriori error estimate.
Deriving a posteriori error estimates for the Stokes equations also has received much attention (see [4,6–8] and so on),
for the Navier–Stokes equation, see [9]. Many people also develop some other methods, like, the estimators based on the
element residual, based on evaluating integrals of the residuals or associated with spatial averages. Besides, the recovery
type error estimators are discussed in [10–16], recently.

Variational multiscale methods are designed to deal with incompressible flow, which define the large scales in a different
way, namely by projection into appropriate subspaces, see Guermond [17], Hughes et al. [18–20] and Layton [21], and other
literatures on VMS methods [21–26]. The idea of two local Gauss integrations has been considered to deal with the varia-
tional multiscale methods (such as [27]).

There are also some researchers trying to combine the adaptive strategy with stabilization method, such as [9,28]. In this
paper, we try to combine VMS with h-adaptive technique, and the combination is particularly efficient and combines the
best algorithmic features of each. Although, a posteriori error estimator is derived based on a projection operator, but by
using two local Gauss integrations, this estimator can be computed easily at the element level. The global upper bound
for the error of the finite element discretization is yielded follows some assumptions.
. All rights reserved.
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The outline of the paper is as follows. Section 2 introduces the governing equations, the notations and some well-known
results used for variational multiscale methods of the Navier–Stokes problem throughout the paper. The posteriori error esti-
mator based on local projection is presented in Section 3, and the equivalent version based on two local Gauss integrations is
derived. In Section 4, some numerical simulations are presented to illustrate the efficiency of the combination of VMS with
adaptive strategy. We finish with a short conclusion in Section 5.

2. Governing equations

We consider the incompressible flows
� mDuþ ðu � rÞuþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ 0 on @X;

ð2:1Þ
where X represents a polyhedral domain in Rd, d = 2,3 with boundary @X, u the velocity vector, p the pressure, f the pre-
scribed body force, and m > 0 the kinematic viscosity, which is inversely proportional to the Reynolds number Re.

The standard variational formulation of (2.1) is given by: find (u,p) 2 (V,S) satisfying
Bðu;p; v; qÞ þ bðu;u;vÞ ¼ ðf ;vÞ 8ðv; qÞ 2 ðV ; SÞ; ð2:2Þ
where
V ¼ H1
0ðXÞ

d and S ¼ L2
0ðXÞ ¼ q 2 L2ðXÞ;

Z
X

qdx ¼ 0
� �

;

Bðu;p; v ; qÞ ¼ mðru;rvÞ � ðr � v ;pÞ þ ðr � u; qÞ; bðu;u; vÞ ¼ ððu � ruÞ;vÞ;
with (�, �) the inner product in L2(X) or in its vector value versions. The norm and seminorm in Hk(X)d are denoted by k � kk

and j � jk, respectively. H1
0ðXÞ will denote the closure of C10 with respect to the norm k � k1. The space V is equipped with the

norm kr � k0 or its equivalent norm k � k1 due to the Poincaré inequality.
For the finite element discretization, let sh be the regular triangulations of the domain X, and define the mesh parameter

h ¼maxT2sh
fdiamðTÞg. We choose the conforming velocity–pressure finite element space (Vh,Sh) � (V,S) satisfying the dis-

crete inf-sup condition
inf
qh2Sh

sup
vh2Vh

ðqh;r � vhÞ
kqhk0krvhk0

P b > 0; ð2:3Þ
where b is independent of h. Here we consider the Taylor–Hood elements (see [29,30]):
Vh ¼ uh 2 CðXÞdjuhjT 2 P2ðTÞd; 8T 2 sh

n o
;

Sh ¼ qh 2 CðXÞjqhjT 2 P1ðTÞ; 8T 2 sh
� �

;

where Pk(T), k = 1,2 is the space of kth-order polynomials on T. We will also need the piecewise constant space
R0 ¼ fvh 2 L2ðXÞjvhjT 2 P0ðTÞ; 8T 2 shg;
where P0(T) is the space of all constant polynomials on T.
Throughout this paper, we shall use the letter C (with or without subscripts) to denote a generic positive constant which

may stand for different values at its different occurrences but that remains independent of the mesh parameter h.
Then, Galerkin finite element discretization of (2.2) is given by: find (uh,ph) 2 (Vh,Sh) satisfying
Bðuh;ph; vh; qhÞ þ bðuh;uh;vhÞ ¼ ðf ; vhÞ 8ðvh; qhÞ 2 ðVh; ShÞ: ð2:4Þ
Because of inequality (2.3), problem (2.4) has a unique solution and the error estimate
krðu� uhÞk0 þ kp� phk0 6 Ch2fkuk3 þ kpk2g; ð2:5Þ
holds provided (u,p) 2 (H3(X)d,H2(X)).
As we know, the Galerkin finite element discretization (2.4) is unstable in the case of higher Reynolds number (or smaller

viscosity). Therefore, stabilization becomes necessary. We firstly consider a common version of VMS methods which was
proposed in [21] for the steady case. We define two spaces L = L2(X)d�d and Lh = R0(X)d�d, the latter is defined on the same
grid as Xh for the velocity deformation tensor. The VMS we consider here is: find (uh,ph) 2 (Vh,Sh) and gh 2 Lh satisfying
ðmþ aÞaðuh; vhÞ � aðgh;rvhÞ þ bðuh;uh;vhÞ � dðph; vhÞ ¼ ðf ;vhÞ 8vh 2 Vh;

dðqh;uhÞ ¼ 0 8qh 2 Sh;

ðgh �ruh; lhÞ ¼ 0 8 lh 2 Lh:

ð2:6Þ
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Here, a(u,v) = (ru,rv) and d(p,v) = (r � v,p). This system is determined by the choices of Lh and a. The stabilization param-
eter a in this scheme acts only on the small scales.

It is easy to verify that the last equation in (2.6) implies that gh is the L2 projection of ruh onto Lh. Now we define the
orthogonal projection operator Pv: L ? Lh with the following properties:
ððI �PvÞl; ghÞ ¼ 0 8 l 2 L; gh 2 Lh; ðH1Þ
kPv lk0 6 Cklk0 8 l 2 L; ðH2Þ
kðI �PvÞlk0 6 Chklk1 8 l 2 L \ H1ðXÞd�d

: ðH3Þ
Here, I is the identity operator.
Then (2.6) can be rewritten as
maðuh;vhÞ þ aððI �PvÞruh; ðI �PvÞrvhÞ þ bðuh;uh;vhÞ � dðph;vhÞ ¼ ðf ;vhÞ 8vh 2 Vh;

dðqh;uhÞ ¼ 0 8qh 2 Sh:
ð2:7Þ
Assume that there are local singularities of the solution of the continuous problem, or, in the critical regions the solution is
less regular, such that the error estimate
krðu� uhÞk0 þ kp� phk0 6 Chfkuk2 þ kpk1g ð2:8Þ
holds provided (u,p) 2 (H2(X)d,H1(X)), so that, the accuracy of the numerical solution is degraded.

Remark 1. To our knowledge, for higher Reynolds number, the constant a should be chosen as the scale of O(h) in order to
stabilize the convective term appropriately. For simplicity, all later experiments are taken with a = 0.1 h.
Remark 2. As discussed in [27], (2.7) has an equivalent version based on two local Gauss integrations: find (uh,ph) 2 (Vh,Sh)
such that
maðuh;vhÞ þ Gðuh;vhÞ þ bðuh; uh;vhÞ � dðph;vhÞ ¼ ðf ; vhÞ 8vh 2 Xh;

dðqh;uhÞ ¼ 0 8qh 2 Sh:
ð2:9Þ
Here,
Gðuh; vhÞ ¼ a
X
T2sh

Z
T;k
ruhrvhdx�

Z
T;1
ruhrvhdx

� �
8uh;vh 2 Vh;
where
R

T;i gðxÞdx indicates an appropriate Gauss integral over T that is exact for polynomials degree i, i = 1, k(k P 2).
In numerical experiments, we will use (2.9) to represent (2.6) for all cases, because the equivalence between them, it will

not affect our results, but save computational times.
Additionally, under some mild assumptions on sh, the following inverse inequality holds [31] which will be used later:
krqhk0 6 CIh
�1kqhk0 qh 2 R1: ð2:10Þ
Spaces consisting of vector-valued functions will hold too.
3. A projection error estimator based on two local Gauss integrations

Before deriving the projection estimator, we define operator Pp: L2(X) ? R0 acting on the pressure. Obviously, Pp has the
same properties as Pv, but has the form of scalar value. Later we will not distinguish Pv and Pp, both denoted by P, for
simplicity.

Then, our global projection estimator is based on the residual between the gradient of the velocity ruh, the pressure ph

and their projection Pruh and Pph. More precisely, we define as follows
gP;T :¼ kðI �PÞruhk0;T þ kðI �PÞphk0;T :
Then, based on orthogonal projection properties of operator P and two local Gauss integrations technique presented in
[27,32], our local projection error estimator will be presented more precisely and computationally based on two local Gauss
integrations as follows:
gðuh;phÞP;T :¼ kðI �PÞruhk0;T þ kðI �PÞphk0;T ffi kðI �PÞruhk2
0;T þ kðI �PÞphk

2
0;T

n o1=2

ffi kruhk2
0;T � kPruhk2

0;T þ kphk
2
0;T � kPphk

2
0;T

n o1=2
ffi

Z
T;k
ðruhÞ2 þ ðphÞ

2dx�
Z

T;1
ðruhÞ2 þ ðphÞ

2dx
� �1=2

:

For all 1th-order polynomials,ruh(T) and ph(T) must be piecewise constants when i = 1. Then, the globally error estimator is
defined by:



gP ¼
X
T2sh

g2
P;T

( )1=2

:
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Remark 3. Here ffi denotes the equivalence. The equivalence just followsZ

kPwk2

0;T ¼
T;1

w2dx:
Here w can be ruh or ph.
We just discuss the case w = ph, for simplicity, the proof is the same for deformation tensor w =ruh.
Assume that qi, i = 1,2,3 are the three vertices of an element T. For ph 2 Sh, we obtain
Z

T;1
ðphÞ

2dx ¼
Z

T;k
ph

q1 þ q2 þ q3

3

� �h i2

dx ¼
Z

T;k

phðq1Þ þ phðq2Þ þ phðq3Þ
3

� 	2

dx ¼
Z

T;k
ðPphÞ

2dx ¼ kPphk
2
0;T :
The equivalence is true.
Remark 4. Based on two local Gauss integrations, g(uh,ph)P,T can be computed explicitly. Before giving the global upper
bound, we recall a lemma in [33] will be useful later.
Lemma 3.1. There exists a positive constant C such that
Chkrphk0 6 kðI �PÞphk0 8ph 2 Sh: ð3:1Þ
Proof. To make the context complete, we also give the proof. From the definition of spaces Sh, we note that ph is continuous
and Pph is constant on each element T, such that r(Pph)jT = 0. As a result, using the inverse inequality (2.10),
h2krphk
2
0 ¼

X
T2sh

h2krphk
2
0;T ¼

X
T2sh

h2krðI �PÞphk
2
0;T 6

X
T2sh

C2
I kðI �PÞphk

2
0;T ¼ CkðI �PÞphk

2
0:
Then, the lemma is proved. h

For ruh 2 Rd�d
1 , spaces consisting of vector-valued functions will also hold:
Chkruhk1 6 kðI �PÞruhk0 8uh 2 Vh: ð3:2Þ
Theorem 3.2. There is a constant C, which only depend on the smallest angle in the triangulation sh and the domainX, such that,
we have the following global upper bounds:
krðu� uhÞk0 þ kp� phk0 6 CgP; ð3:3Þ
where C independent of h.
Proof. Because of the stability of (2.2) and (2.7), then, we assume that, there are two positive constants Cl, Cu such that:
Cl 6 kpk1; kphk1; kuhk2; kuk2 6 Cu:
Following the discuss of Lemma 3.1, and using the triangle inequality, we yield
krðu�uhÞk0þkp�phk06Chkuk2þChkpk16C
Cu

Cl
hkruhk1þC

Cu

Cl
hkphk16CfkðI�PÞruhk0þkðI�PÞphk0g6CgP:
This is (3.3). h
4. Numerical tests

In this section we report several experiments to verify the stability and accuracy of the combination of VMS with adaptive
technique. The numerical examples are broadly divided into two parts. The first part presents a singular problem. The second
part deals with the problem of nonlinear steady flow with high Reynolds numbers.

4.1. Implementation

In all experiments, the algorithms are implemented using public domain finite element software [34].
For completeness, we give the main idea of the refinement strategy presented in [34] for the algorithm of the discrete

problem (2.9). Starting from the original triangulation s0 of a polygonal approximation X, we construct a sequence of refined
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triangulations sj as follows. Given sj, first, we compute the solution (uj,pj) from the problem (2.9), then, we compute the error
estimator gj

P;T , the new mesh size is given by the following formulae:
hjþ1 ¼
hj

fj gj
P;T

� � ;

where hj is the previous ‘‘meshsize” field, and fj is a user function defined by
fj ¼min max gj
P;T=ðcgjÞ;1:0000

� �
;3

� �
;

where gj means the mean of gj
P;T , c is an user coefficient generally close to one and the numbers 1.0000, 3 also can be chan-

ged by the user according to the requirement.
For simplicity, in all latter tests, c = 0.8 will be our choice. Certainly, we also can consider other refinement strategy, such

as in [4], there will not be much differences between them.
The computation adaptive strategy here is made of two steps.
First, choose a tolerance gs, start from the original triangulation s0, compute the gP.

� Step 1: If gP 6 gs, stop, and we obtain the final finite element solution. Otherwise, we go to Step 2.
� Step 2: Compute the gP,T and their mean value �g, and generate a new mesh size h by the above strategy, then solve the

discrete problem (2.9) and recompute gP based on this new triangulation. Go back to Step 1.

4.2. A singular problem

First, we consider X as a disk of radius 1 with a crack joining the center to the boundary as presented in [4] and the exact
solution the velocity u = (u1,u2) and pressure p is given as follows:
u1 ¼ 1:5r1=2ðcosð0:5hÞ � cosð1:5hÞÞ;
u2 ¼ 1:5r1=2ð3sinð0:5hÞ � sinð1:5hÞÞ;
p ¼ �6=r1=2cosð0:5hÞ;
where (r,h) is a polar representation of a point in the disk and is singular at the end of the crack, i.e., at the center of the disk.
With low Reynolds number Re = 1, f is determined by (2.1) and u is enforced with appropriate inhomogeneous boundary
conditions.

For convenience of presentation, we introduce the following notations:

� jjj(eh,eh)jjj =: kr(u � uh)k0 + kp � phk0;
� er =: the relative error of jjj(eh,eh)jjj;
� DOFj :¼ number of elements in sj;
� ratio :¼ 2�logðej=ej�1Þ

logðDOFj�1=DOFjÞ
, experimental order of convergence of ej, ej can be the related true error or the projection estimator;

� E :¼ gj
P=jjjðe

j
h; e

j
hÞjjj, effective index, i.e., the ratio between the projection estimator and the true error.

The uniform and adaptive refinements both begin with the same initial meshes as shown in left part of Fig. 4.1. Also the
final uniform and adaptive refinement are presented in middle and right part of this figure, respectively. Pressure level lines
are plotted on related grids (see Fig. 4.2). In Tables 4.1 and 4.2 we list the convergence analysis and effectivity ratio for both
uniform and adaptive cases.

The observations and conclusions of this experiment are presented as follows:
Fig. 4.1. From left to right: initial meshes; final refinement at uniform case; final refinement at adaptive case.



IsoValue
-13.5916
-11.9646
-10.3375
-8.71047
-7.08343
-5.45639
-3.82935
-2.2023
-0.575259
1.05178
2.67883
4.30587
5.93291
7.55996
9.187
10.814
12.4411
14.0681
15.6952
17.3222

IsoValue
-37.1126
-33.1864
-29.2602
-25.3341
-21.4079
-17.4817
-13.5556
-9.62938
-5.70321
-1.77704
2.14913
6.0753
10.0015
13.9276
17.8538
21.78
25.7061
29.6323
33.5585
37.4847

IsoValue
-196.543
-177.51
-158.477
-139.444
-120.41
-101.377
-82.3442
-63.3111
-44.2779
-25.2448
-6.21166
12.8215
31.8546
50.8877
69.9209
88.954
107.987
127.02
146.053
165.087

7

Fig. 4.2. The pressure line on related triangulations. Form the top down: initial meshes; final refinement at uniform case; final refinement at adaptive case.
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� From Fig. 4.1, we notice that the adaptive strategy creates a lot of triangles in the area near the end of the crack, where the
singularity arises, but uniform case refines everywhere.
� After some successive iterations, for both case, compared with the initial pressure, the pressure based on final uniform

and adaptive refinement will be less singularity and more smooth. Although, in this figure, the result in the uniform case



Table 4.1
Convergence analysis and effectivity ratio for a sequence of uniform meshes.

Level DOF CPU er gP E

1 396 3.30 0.4034 2.1866 0.4011
2 1588 13.27 0.3076 1.7057 0.4095
3 3604 29.30 0.2614 1.4925 0.4222
4 6404 57.78 0.2276 1.3469 0.4374
5 9980 93.17 0.2076 1.2153 0.4322

Ratio – – 0.4116 0.3640 –

Table 4.2
Convergence analysis and effectivity ratio for a sequence of adapted meshes.

Level DOF CPU er gP E

1 396 2.47 0.4034 2.1866 0.4011
2 800 7.61 0.2513 1.5927 0.4685
3 1437 16.99 0.1547 1.1668 0.5575
4 2726 35.02 0.1005 0.8409 0.6181
5 5128 66.82 0.0669 0.6037 0.6662

Ratio – – 1.4032 1.0051 –
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still gets small oscillation, while in adaptive grids, the pressure is very smooth. When the mesh is fine enough, the uni-
form case will also obtain a smooth solution, however, it will require much more degrees of freedom than the adaptive
case.
� As shown in Tables 4.1 and 4.2, according to the relative error er, uniform refinements do not derive good approximation,

even using much more meshes, we still cannot get a better result, actually, the ratio is only near to 0.4, too poor to use
uniform strategy to approximate the true solution, which will ask for more storage memory and CPU time. On the other
hand, the adaptive strategy obtains much better approximation solution, and the ratio arises to nearly 1.4, although this
still does not reach to the optimal convergence order, but it requires less meshes and gets much better accuracy, and will
be very significant in practice, especially, in 3D case. The corresponding CPU time for the runs with errors are also shown
in Tables 4.1 and 4.2, we can see that the adaptive strategy will save much CPU time than the uniform strategy. Addition-
ally, in uniform case, the effectivity E only approaches 0.4, while in adaptive case, E increases from 0.40 to 0.66 succes-
sively level by level, which is better than the uniform case.

4.3. Lid driven cavity

Our second examples is the ‘lid driven cavity’ which is a popular benchmark problem for testing numerical schemes. In
this test, fluid is enclosed in a square box, with an imposed velocity of unity in the horizontal direction on the top boundary,
and a no slip condition on the remaining walls. The computational results of VMS based on uniform and adaptive refine-
ments for a set of different higher Reynolds numbers (Re = 3200,5000,10,000) are shown in the Figs. 4.3–4.9 and 4.10
and Table 4.3, compared with the results obtained by Ghia et al. [35].

In uniform (but unstructured) case, the successive meshes are obtained with the Delaunay triangulation at h = 1.0/N. We
will choose N = 32,48,64 according to the related Reynolds number, and a = 0.1 h will be chosen for all cases. In adaptive
Fig. 4.3. Triangulations for uniform and adaptive cases. Left: uniform case (but unstructured), N = 32; Right: initial triangulation for adaptive case with
different Reynolds numbers.
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Fig. 4.5. Vertical midlines for Re = 3200.

Fig. 4.4. Final adaptive refinements for the driven cavity with related Reynolds numbers. From left to right: Re = 3200,5000,10,000.
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Fig. 4.6. Horizontal midlines for Re = 3200.
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strategy, we start with an initial mesh generated with the Delaunay triangulation at h = 0.1. The parameters for adaptive case
also will be taken as done in uniform case. The mesh for N = 32 is shown in left part of Fig. 4.3, the right part of this figure is
the commonly used initial triangulation for adaptive refinements for all Reynolds numbers.

Grids on final adaptive refinements for different Reynolds numbers are plotted in Fig. 4.4. For all triangulations, we
observe that the region around the primary vortex are hardly refined, but a lot of triangles create in the two upper cor-
ners of the cavity due to the singularities. Because of the discontinuities in the boundary conditions, the upper and the
right boundary also require much refinements. Besides, in the right bottom corner of the cavity where the second vortex
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Fig. 4.7. Vertical midlines for Re = 5000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y 
of

 c
om

po
ne

nt
s 

ve
lo

ci
ty

Adaptive
Uniform
Ghia Ghia Shin

Fig. 4.8. Horizontal midlines for Re = 5000.
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Fig. 4.9. Vertical midlines for Re = 10,000.
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may appear and at the lower left corner in which a third vortex appears, adaptive strategy also will not take more
refinements.
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Fig. 4.10. Horizontal midlines for Re = 10,000.

Table 4.3
Meshes and CPU time for VMS on uniform refinement and final adaptive refinement, respectively.

Strategy Re 3200 5000 10,000

Uniform DOF 2430 5474 9694
CPU 492.58 1274.28 3526.06

Adaptive DOF 1913 3611 4402
CPU 407.91 886.28 1710.98

Fig. 4.11. Triangulations for the step problem with Re = 1000. From left to right: initial meshes s0; second refinement s2; final refinement s4.
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In particular, we draw the x component of velocity along the vertical centerline and y component of velocity along the
horizontal centerline. Ghia et al.’s algorithm is based on the time dependent stream function using the coupled
implicit and multigrid methods (see Figs. 5.2–5.9). Compared with the fairly finer mesh (h = 1/129, DOF 	 34,000) in [35],
the uniform numerical simulations are computed on a mesh (DOF = 2430,5474,9694) and the final adaptive case requires
meshes (DOF = 1913,3611,4402). Good agreement with the benchmark data of Ghia et al. [35] verify both cases. Moreover,
the combination of VMS with adaptive strategy approaches the benchmark data much better than the uniform case
somewhere.

To show the effectiveness of VMS based on adaptive strategy than VMS based on uniform strategy, we give the CPU time
in Table 4.3 following the above tests. From this table, we can see that adaptive case will need less meshes and save more
CPU time as Re increases than uniform case.

4.4. Navier–Stokes flow over a step

Finally, we consider the Navier–Stokes flow over a step with high Reynolds number Re = 1000. The computational domain
is given by X = (0,4) � (0,1)/(1.2,1.6) � (0,0.4), and the flow is enforced with Dirichelet condition u = (0,0) at upper and low-
er computational boundaries, natural boundary condition at the outflow while u = (4*y*(1 � y),0) at the inflow. Here the
spikes in the pressure are due to a discontinuity in the geometry of the boundary. Figs. 4.11 and 4.12 show that the different
adaptive refinements and the related contour plots of the pressure based on these grids, respectively. In this example, a sin-
gularity arises at the step from the re-entrant corner. Fig. 4.11 shows that there are more grids added near the upper corner
of the step after some successive iterations. From Fig. 4.12, we know that initial grid introduces numerical dissipation, while
after enough adaptive iterations, the profile of pressure gets better representation with less dissipation.

5. Conclusions

In this paper, we have designed and analyzed a posteriori error estimate for variational multiscale methods of the steady
Navier–Stokes problem based on a projection estimator. The discussions and the numerical tests showed that the projection



IsoValue
-1.58535
-1.47856
-1.37176
-1.26497
-1.15818
-1.05139
-0.944593
-0.8378
-0.731008
-0.624215
-0.517423
-0.41063
-0.303837
-0.197045
-0.0902522
0.0165404
0.123333
0.230126
0.336918
0.443711

IsoValue
-0.46746
-0.40178
-0.336101
-0.270421
-0.204742
-0.139062
-0.0733826
-0.00770303
0.0579765
0.123656
0.189336
0.255015
0.320695
0.386374
0.452054
0.517733
0.583413
0.649093
0.714772
0.780452

IsoValue
-0.975075
-0.88341
-0.791744
-0.700078
-0.608412
-0.516747
-0.425081
-0.333415
-0.241749
-0.150084
-0.058418
0.0332477
0.124913
0.216579
0.308245
0.399911
0.491576
0.583242
0.674908
0.766573

Fig. 4.12. The related pressure level lines on different grids. From the top down: initial meshes s0; second refinement s2; final refinement s4.
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estimator is computational and efficiency. This combination of VMS and adaptive technique has strong promise, but many
open questions remain including the correct extension of the method to time dependent problems, further analysis of the
local upper and lower bounds, and so on.
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